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The Unsteady Adaptive Stochastic Finite Elements (UASFE) method resolves the effect of
randomness in numerical simulations of single-mode aeroelastic responses with a constant
accuracy in time for a constant number of samples. In this paper, the UASFE framework is
extended to multi-frequency responses and continuous structures by employing a wavelet
decomposition pre-processing step to decompose the sampled multi-frequency signals
into single-frequency components. The effect of the randomness on the multi-frequency
response is then obtained by summing the results of the UASFE interpolation at constant
phase for the different frequency components. Results for multi-frequency responses and
continuous structures show a three orders of magnitude reduction of computational costs
compared to crude Monte Carlo simulations in a harmonically forced oscillator, a flutter
panel problem, and the three-dimensional transonic AGARD 445.6 wing aeroelastic bench-
mark subject to random fields and random parameters with various probability
distributions.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Numerical errors in industrial simulations nowadays start to reach acceptable engineering accuracy levels. As a conse-
quence, physical variability tends to dominate the error in numerical predictions. Inherent physical variations are present
in virtually all engineering applications due to, for example, varying atmospheric conditions and production tolerances.
Accounting for physical variations is, therefore, vital for making reliable predictions, which can be utilized in robust design
optimization and reducing design safety factors. To this end, we are interested in determining the full probability distribu-
tion and the central moments of the output of interest. In contrast, in structural reliability analysis [6] one propagates input
randomness to compute the probability of failure. Structural failure is then defined as the point where selected limit state
functions exceed their limits for failure [22]. Failure probabilities are often small such that in reliability analysis one pursues
the tails of the distribution instead of the statistical moments.

An intuitive uncertainty quantification method for propagating physical input variations to the output probability distri-
bution is Monte Carlo simulation [14]. However, solving many deterministic problems for randomly varying parameter val-
ues simply leads to impractically high computational costs for problems which are already computationally intensive in the
deterministic case, such as computational fluid dynamics and fluid–structure interaction simulations. More efficient non-
intrusive Polynomial Chaos methods [16,27] aim at reducing the number of deterministic computations by using a global
polynomial interpolation of the samples in parameter space. An effective sampling in suitable Gauss quadrature points is
employed in Probabilistic Collocation (PC) approaches [2,23,28]. Other Polynomial Chaos formulations [1,13,32,39] construct
a polynomial approximation of the response based on Hilbert space projections of suitable orthogonal polynomial bases. A
. All rights reserved.
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more robust approximation is achieved by multi-element Adaptive Stochastic Finite Elements (ASFE) methods
[11,19,20,31,37], which employ a piecewise polynomial interpolation of the samples. Due to these developments the effi-
cient propagation of physical randomness has become possible over the last decade for steady computational problems with
not too many random input parameters such as in [34]. For high-dimensional probability spaces the tensor quadrature
methods suffer from the curse-of-dimensionality with an exponentially increasing sample size with the number of random
parameters. In contrast for Monte Carlo methods the number of required samples to reach a target accuracy is independent
of the dimension of the problem.

One of the current challenges in modeling physical variability in computationally intensive problems is unsteadiness. The
trend towards unsteady simulations in computational fluid dynamics and high fidelity post-flutter predictions in fluid–struc-
ture interaction dictates also an increasing application of uncertainty quantification to time-dependent problems. However,
uncertainty quantification methods usually require a fast increasing number of samples with time to resolve the large effect
of random parameters in these dynamical systems with a constant accuracy. The increasing sample size is caused by the
increasing nonlinearity of the response surface [26] due to the effect of the random parameters on the frequency and, con-
sequently, on the increasing phase differences in time for oscillatory responses. Resolving the asymptotic effect of physical
variations, which is of practical interest in post-flutter analysis [4], can, therefore, easily lead to thousands of required deter-
ministic simulations. For oscillatory time-dependent responses a Fourier Chaos basis [24] has recently been proposed.

Two alternative Unsteady Adaptive Stochastic Finite Elements (UASFE) methodologies [35,36] developed by the authors
achieve a constant accuracy in time with a constant number of samples, in contrast with the usually fast increasing number
of samples required by other methods. The first UASFE formulation is based on uncertainty quantification interpolation of a
time-independent parameterization of oscillatory samples [33,35] instead of the time-dependent samples themselves. This
time-independent parameterization, developed both in combination with a global polynomial interpolation in [33] and a
multi-element ASFE interpolation in [35], results in an interpolation accuracy which is independent of time. In this paper,
we employ an ASFE interpolation based on Newton–Cotes quadrature in simplex elements [37], since it is a non-intrusive
higher-order extrema diminishing scheme in probability space that requires a low number of deterministic computations.
The second UASFE methodology based on uncertainty quantification interpolation of the oscillatory samples at constant
phase [36] instead of at constant time, eliminates the effect of increasing phase differences with time. The latter approach
has the advantages that it is not subject to a parameterization error and that it can resolve time-dependent functionals. The
merit of this framework as compared to previous approaches is that it is proven to achieve a bounded error as function of the
phase for periodic responses and under certain conditions also a bounded error in time [38]. This results in practice in an
approximately constant accuracy in time for a constant number of samples also for nonperiodic responses. However, in both
UASFE formulations the phase of the oscillatory samples has to be well-defined. This restriction limits the application of the
methodologies to single-frequency responses.

Fluid–structure interaction problems of practical importance, however, often exhibit a multi-frequency response. The dif-
ferent frequencies can originate from the combination of the natural frequency of the structure and the dominant frequency
of the fluid forcing. The structural system can also exhibit a multi-frequency response itself. A dominant frequency in the
flow forces can, for example, be caused by the Von Kármán vortex shedding in the wake of a blunt body. A multi-frequency
structural response results naturally from a continuous structure with numerous eigenmodes and eigenfrequencies.

In this paper the Unsteady Adaptive Stochastic Finite Elements framework is further extended to resolve the effect of ran-
domness on multi-frequency aeroelastic responses by employing a wavelet decomposition. The multi-frequency samples are
first converted into their single-frequency components in a standard wavelet decomposition pre-processing step. The effect
of the physical variations on the different frequency components is then resolved using UASFE interpolation of the single-
frequency signals at constant phase. The final effect of the randomness on the multi-frequency response is obtained by sum-
ming the contributions of the single-frequency components. The multi-frequency response of a continuous structure is first
projected onto either the nodal basis of a finite elements discretization or the modal basis of the natural modes of the struc-
ture in vacuum, before the wavelet decomposition is performed.

The proposed UASFE formulation for multi-frequency responses is developed in Section 2. The effect of randomness on
the multi-frequency response of a single-degree-of-freedom mass–spring system with harmonic external forcing is resolved
and the error convergence is assessed in Section 3.1. In Section 3.2 the stochastic multi-frequency response of a continuous
panel structure in supersonic flow is analyzed using a modal projection of the structural response. The three-dimensional
transonic AGARD 445.6 wing subject to random free stream flow conditions is studied in Section 3.3. A nodal representation
of the continuous structure shows based on the tip-node displacement that the randomness causes a non-zero probability of
flutter. The results for input random fields and random parameters with various probability distributions are compared to
those of Monte Carlo simulations. The UASFE framework presented here for fluid–structure interaction simulation is also
applicable to unsteady fluid dynamics and other unsteady multi-disciplinary problems.
2. Unsteady Adaptive Stochastic Finite Elements for multi-frequency responses

The wavelet decomposition of multi-frequency time series is briefly reviewed in Section 2.1. In Section 2.2 the procedure
for multi-frequency responses of continuous structures is detailed. The UASFE interpolation of the single-frequency compo-
nents is developed in Section 2.3. The resulting UASFE algorithm for multi-frequency responses is summarized in Section 2.4.
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2.1. Wavelet decomposition of multi-frequency signals

Assume that dynamical system
Lðx; t;x; uðx; t;xÞÞ ¼ Sðx; t;xÞ; ð1Þ
with appropriate initial and boundary conditions results in an oscillatory response uðx; t;xÞ, which consists of multiple fre-
quency components. Operator L and source term S are defined on domain D� T �X, where x 2 D and t 2 T are the spatial
and temporal dimensions with D � Rd; d ¼ f1;2;3g, and T ¼ ½0; tmax�. The argument x denotes a realization of the set of out-
comes X of the probability space ðX;F ; PÞ with F � 2X the r-algebra of events and P a probability measure. The probability
space originates from n uncorrelated second-order random parameters aðxÞ ¼ fa1ðxÞ; . . . ; anðxÞg 2 A in Eq. (1) and its initial
and boundary conditions.

A number of methods for decomposing multi-frequency signals in single-frequency components is readily available [8].
For example, the Fourier transform can be used to determine the frequency resolution of a signal by representing it in terms
of sinusiodal functions. The Fourier transform contains, however, no localized time information. In contrast the short-time
Fourier transform and the wavelet transform result in time-varying frequency information. The wavelet transform usually
results in a superior multiresolution decomposition of the signal at reduced computational costs in comparison with
short-time Fourier transform, which has limited frequency resolution in time.

The stochastic behavior of multi-frequency response uðx; t;xÞ is resolved using UASFE by computing Ns deterministic
samples uiðx; tÞ for varying parameter values ai, with i ¼ 1; . . . ;Ns. The multi-frequency samples uiðx; tÞ are first decomposed
into their different modes using wavelets [10,30]. The discrete wavelet transform of a signal f ðtÞ is given by
f ðtÞ ¼
X

a

X
b

ca;bwa;bðtÞ; ð2Þ
with wavelet transform coefficients ca;b and wavelet
wa;bðtÞ ¼
1ffiffiffi
a
p W

t � b
a

� �
; ð3Þ
scaled and translated versions of the mother wavelet WðtÞ, with positive scale parameter a and real shift parameter b. The
discrete wavelet transform is used here to divide the multi-frequency samples uiðtÞ into Nf single-frequency components
~ui;kðtÞ
uiðtÞ ¼
XNf

k¼1

~ui;kðtÞ; ð4Þ
see Fig. 1. The argument x has been dropped here for convenience in the notation. The parameters a and b are determined in
a standard wavelet decomposition in an available wavelet toolbox. The required number of frequency levels Nf can be estab-
lished by analyzing the deterministic system response. UASFE interpolation of the single-frequency signals ~ui;kðtÞ is then per-
formed to resolve the effect of the randomness on the different frequency components given by the functions ~ukðt;xÞ. In
order to obtain an approximation of the stochastic behavior of the multi-frequency response uðt;xÞ the contributions of
the different frequency components are summed
uðt;xÞ ¼
XNf

k¼1

~ukðt;xÞ; ð5Þ
from which the probability distribution and statistical moments of the output, e.g. mean luðtÞ and standard deviation ruðtÞ,
can be determined using sorting and numerical integration. In order to effectively decompose a multi-mode signal using
wavelet transformation, the different frequencies need to be sufficiently distinct. More precisely the single frequencies have
to fall in different levels of the wavelet decomposition. A frequency separation of an order of magnitude is in this case en-
ough. If some frequencies cannot be separated well by the wavelet decomposition, the phase of the remaining signal may not
be well-defined by the algorithm for extracting the phase based on local extrema of the sample. In that case, Adaptive Sto-
chastic Finite Elements interpolation can directly be applied to interpolate the samples at constant time. The wavelet decom-
position is performed using the Matlab Wavelet Toolbox. In the applications Coifman’s wavelets [9] are employed, which give
the best results for the considered examples.

2.2. Treatment of continuous structures

Continuous structures in vacuum exhibit in general a multi-frequency response in terms of their natural modes and nat-
ural frequencies. The coupling of the structure with a flow field in a fluid–structure interaction alters the eigenmodes of the
complete system. Usually the natural modes and frequencies of the coupled system are unknown due to the nonlinearity of
the equations describing the flow. Therefore, both a nodal and a modal description of the structural response in terms of,
respectively, the degrees-of-freedom of a finite element discretization or the natural modes of the structure in vacuum result
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Fig. 1. Decomposition of multi-frequency samples uiðtÞ into single-frequency components.
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in multi-frequency signals. The nodal description results in multi-frequency responses due to the multiple natural frequen-
cies of the system. The modal description gives rise to multi-frequency signals due to the change of the natural modes and
frequencies of the system caused by the coupling with the flow. Multiple harmonics in the dynamical response of structures
can also be a result of multi-frequency forcing and structural nonlinearities. The modal decomposition is applicable to linear
structures only because it is based upon the structural eigenmodes.

The stochastic response of a continuous structure is analyzed by, firstly, projecting the sampled responses uiðtÞ onto either
a nodal or modal basis, resulting in multi-frequency signals ui;jðtÞ with j ¼ 1; . . . ;NDOF and NDOF the number of degrees-of-
freedom of the discretized structure. Secondly, the multi-frequency nodal or modal response signals ui;jðtÞ are decomposed
into their single-frequency components ~ui;j;kðtÞ, with k ¼ 1; . . . ;Nf , using the wavelet analysis based on (2) and (3). UASFE
interpolation is then, thirdly, performed for the single-frequency components ~ui;j;kðtÞ of the nodal or modal response to ob-
tain ~uj;kðt;xÞ. Finally, the UASFE results for the components ~uj;kðt;xÞ are summed together
uðt;xÞ ¼
XNDOF

j¼1

XNf

k¼1

~uj;kðt;xÞ; ð6Þ
to determine the stochastic response surface uðt;xÞ.

2.3. Unsteady Adaptive Stochastic Finite Elements sampling interpolation

The single-frequency signals ~ui;j;kðtÞ which result from the wavelet decomposition of multi-frequency signals ui;jðtÞ are
interpolated using Unsteady Adaptive Stochastic Finite Elements (UASFE) with interpolation of the samples at constant
phase [36]. The values of the n random parameters aðxÞ for the Ns deterministic computations are selected using a non-
intrusive Adaptive Stochastic Finite Elements (ASFE) method based on Newton–Cotes quadrature points in simplex elements
[37]. The ASFE formulation employs a piecewise quadratic approximation of the response surface by dividing parameter
space A into Ne simplex elements Al with l ¼ 1; . . . ;Ne. The quadratic approximation in the elements is constructed by per-

forming deterministic computations for the values of the random parameters aðxÞ that correspond to the nþ 2
2

� �
second-

degree Newton–Cotes quadrature points in the elements shown in the two-dimensional example of Fig. 2(a). The formula-
tion can geometrically be extended to arbitrarily higher-dimensional parameter spaces A.

The single-frequency signals ~ui;j;kðtÞ are interpolated at constant phase by scaling them with their phase /i;j;kðtÞ according
to
~u�i;j;kð/i;j;kðtÞÞ ¼ ~ui;j;kðtÞ: ð7Þ



Fig. 2. Discretization of two-dimensional parameter space A using 2-simplex elements and second-degree Newton–Cotes quadrature points given by the
dots.
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The time series of the phases /i;j;kðtÞ and the scaled signals ~u�i;j;kð/i;j;kðtÞÞ are interpolated using the piecewise quadratic inter-
polation of ASFE to the functions /j;kðt;xÞ and ~u�j;kð/j;kðt;xÞ;xÞ, respectively. The result of the ASFE interpolation
~u�j;kð/j;kðt;xÞ;xÞ is scaled back to a function of time ~uj;kðt;xÞ using
~uj;kðt;xÞ ¼ ~u�j;kð/j;kðt;xÞ;xÞ: ð8Þ
The approximation of the stochastic response surface uðt;xÞ is finally obtained by summing the contributions of the single-
frequency components ~uj;kðt;xÞ according to (6).

The phase /i;j;kðtÞ is extracted from the single-frequency signals using a trial-and-error procedure based on the local ex-
trema of the time series ~ui;j;kðtÞ. The procedure identifies a cycle of oscillation based on two or more successive local maxima.
The selected cycle is accepted if the maximal error of its extrapolation in time with respect to the actual sample is smaller
than a threshold value �ek for at least one additional cycle length. The function for the phase /kðtÞ in the whole time domain
t 2 T is constructed by identifying all successive cycles of ukðtÞ and extrapolation to t ¼ 0 and t ¼ tmax before and after the
first and last complete cycle, respectively. The phase is normalized to zero at the start of the first cycle and a user-defined
parameter determines whether the sample is assumed to attain a local extremum at t ¼ 0. The UASFE interpolation is re-
stricted to the time domain that corresponds to the range of phases that is reached by all samples in each of the elements.
UASFE can be applied to problems in which the phase of the single-frequency signals ~ui;j;kðtÞ is well-defined. In other cases
the ASFE interpolation is applied directly to the samples uiðtÞ.

The initial discretization of parameter space A consisting of the minimum of Neini
¼ n! simplex elements and Nsini

¼ 3n

samples, see Fig. 2(b), is adaptively refined as illustrated in Fig. 2(c). The refinement measure ql in element Al is defined as
ql ¼ PlV
NV
l maxðjeig1ðHlðuÞÞj; . . . ; jeignðHlðuÞÞjÞ; ð9Þ
based on the total of the maximum absolute eigenvalues of the Hessian Hl
Hðyðx1; . . . ; xnÞÞ ¼

@2y
@x2

1

@2y
@x1@x2

� � � @2y
@x@xn

@2y
@x2@x1

@2y
@x2

2
� � � @2y

@x2@xn

..

. ..
. . .

. ..
.

@2y
@xn@x1

@2y
@xn@x2

� � � @2y
@x2

n

2
66666664

3
77777775
; ð10Þ
of /j;kðt;xÞ and ~u�j;kð/j;kðt;xÞ;xÞ for j ¼ 1; . . . ;NDOF and k ¼ 1; . . . ;Nf . The refinement measure ql is weighted by the probabil-
ity contained by element Al defined by the volume of the element Xl is probability space X
Pl ¼
1
n!
jdetðxl;0 �xl;1 xl;1 �xl;2 � � � xl;n�1 �xl;n Þj; ð11Þ
and scaled by the factor NV ¼ 2 to compensate the increase of the second-order derivatives of the quadratic approximation
with the decrease of the element volumes
Vl ¼
1
n!
jdetð al;0 � al;1 al;1 � al;2 � � � al;n�1 � al;n Þj; ð12Þ
containing a discontinuity, where al;j are the nþ 1 vertices of the n-simplex Al in parameter space A, and xl;j are given by the
mapping of al;j to probability space X for j ¼ 0; . . . ;n. Stochastic grid refinement is terminated when the convergence mea-
sure dNe for the mean luðtÞ and standard deviation ruðtÞ defined as in [35]
dNe ¼max
jlubNe=2c

ðtÞ � luNe
ðtÞj1

jluNe
ðtÞj1

;
jrubNe=2c ðtÞ � ruNe

ðtÞj1
jruNe

ðtÞj1

 !
; ð13Þ
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is smaller than a user-defined stopping criterion �d or when a threshold for the maximum number of samples Ns is exceeded.
Convergence measure dNe can be extended to include higher-order moments.

Due to the location of the Newton–Cotes quadrature points the required number of deterministic computations is rela-
tively low, since the deterministic samples are reused in successive refinements and the samples are used in approximating
the response in multiple elements. In order to preserve monotonicity and extrema of the samples the elements are subdi-
vided into Nelin

¼ 2n subelements with a linear approximation of the response where necessary without performing addi-
tional deterministic. This formulation conserves the total variation of the samples and is, therefore, total variation
diminishing (TVD) [15] in probability space. This prevents unphysical predictions due to overshoots and undershoots near
singularities at the expense that the method does not achieve spectral convergence for smooth responses as Galerkin and
Gauss quadrature Stochastic Finite Elements methods can.

As is common in multi-element methods, the probability of the random parameters aðxÞ is assumed to be zero outside a
finite domain. Probability distributions on infinite domains are truncated at a small enough threshold value for the proba-
bility, such that the truncation error is small compared to other numerical errors that occur in practical applications. The
interpolation of the single-frequency components at constant phase can also be performed using another non-intrusive
uncertainty quantification scheme than the ASFE interpolation employed here.

2.4. Algorithm summary

The resulting Unsteady Adaptive Stochastic Finite Elements algorithm for resolving the effect of random parameters on
fluid–structure interaction systems with multi-frequency responses and continuous structures is listed below:

1. Compute the deterministic system responses uiðtÞ by solving (1) for the parameter values ai corresponding to the quad-
rature points in the initial stochastic grid for i ¼ 1; . . . ;Nsini .

2. Project the deterministic responses of the continuous structure onto a nodal finite element representation or onto the
natural modes of the structure in vacuum, which results in the time series ui;jðtÞ with j ¼ 1; . . . ;NDOF.

3. Decompose the multi-frequency signals ui;jðtÞ into single-frequency components ~ui;j;kðtÞ using wavelet decomposition
based on Eqs. (2) and (3).

4. Interpolate the single-frequency time series ~ui;j;kðtÞ to the functions ~uj;kðt;xÞ using UASFE interpolation of the signals
~ui;j;kðtÞ at constant phase.

5. Determine the stochastic response surface uðt;xÞ by summing the contributions of the single-frequency components
~uj;kðt;xÞ according to Eq. (6).

6. Refine the element of the stochastic grid with the largest value of refinement measure ql with l ¼ 1; . . . ;Neini
.

7. Repeat steps 1–6 for the parameter values ai corresponding to the new quadrature points in the refined element with
i ¼ Nsold

þ 1; . . . ;Nsnew .
8. Stop the adaptive stochastic grid refinement based on convergence of the mean luðtÞ and standard deviation ruðtÞ, or

threshold Ns for the maximum number of samples.

For single-degree-of-freedom structural systems step 2 can obviously be omitted.

3. Results

The UASFE method is applied to multi-frequency signals and continuous structures in a harmonically forced oscillator in
Section 3.1, a flutter panel in Section 3.2, and the transonic three-dimensional AGARD 445.6 wing in Section 3.3. The results
are compared to those of converged Monte Carlo simulations with uniformly sampled realizations in sample space
x 2 ½0;1�Ns .

3.1. Harmonically forced oscillator

The mass–spring system with a harmonic forcing as described in Section 3.1.1 is a simple model problem for a structural
system with aerodynamic forcing. The resulting multi-frequency response contains the forcing frequency and the natural fre-
quency of the structure. The effect of a random spring stiffness on the multi-frequency response is resolved in Section 3.1.2. In
Section 3.1.3 the effect of independent randomness in a combination of spring stiffness and forcing frequency is studied.

3.1.1. Forced mass–spring system
The forced mass–spring system of Fig. 3 is governed by
M
@2x
@t2 þ KðxÞx ¼ AF sin xFðxÞt; t 2 ½0;1Þ; ð14Þ
with initial conditions xð0Þ ¼ 0 and @x=@tð0Þ ¼ 0 for the position and velocity of mass M ¼ 1, and forcing amplitude AF ¼ 1.
Randomness is assumed in the positive parameters spring stiffness KðxÞ and forcing frequency xFðxÞ given by truncated



K M
F(t)

x

Fig. 3. Forced mass–spring system.
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lognormal distributions with mean values lK ¼ 1 and lxF
¼ 5 and coefficients of variation of 10%. The forcing frequency xF

has been chosen here to differ sufficiently from the structural eigenfrequency for the mean structural stiffness
ffiffiffiffiffiffiffiffiffiffiffiffiffi
lK=M

p
¼ 1

for the wavelet decomposition to be effective. The tails of the probability distribution are truncated such that the resolved
parameter domain accounts for 99.8% of the realizations as is common for multi-element methods. The resulting 0.2% trun-
cation error is small compared to the usual discretization and time integration errors in engineering simulations. The Nf ¼ 2
frequencies in the time evolution of xðt;xÞ can clearly be recognized in the analytical solution of (14)
xðt;xÞ ¼ AF

KðxÞ �MxFðxÞ2
sin xFðxÞt �

xFðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KðxÞ=M

p sin

ffiffiffiffiffiffiffiffiffiffiffiffi
KðxÞ

M

r
t

 !
: ð15Þ
The frequency of the first sinusoidal term equals the forcing frequency xF and the second term is governed by the natural
frequency of the structure

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KðxÞ=M

p
. Analytical solution (15) is evaluated at discrete time levels tm ¼ mDt, with

m ¼ 0; . . . ;Nt; Nt ¼ tmax=Dt, and Dt ¼ 0:01 for the results to be comparable with those of problems solved by numerical time
integration. Since each sample reaches a different minimum and maximum phase in the time domain t 2 T , the ASFE inter-
polation at constant phase is restricted to the range of phases that is reached by all samples in an element. The UASFE-cp
interpolation is then limited to the time domain which corresponds to ~/ 2 ½maxk/kð0Þ;mink/kðtmaxÞ� in the elements. There-
fore, the samples are computed until tmax ¼ 100 to determine the stochastic solution until t ¼ 50. The considered time inter-
val corresponds to approximately 80 and 16 periods for the mean harmonic forcing frequency lxF

and the structural
eigenfrequency for the mean value of the stiffness lK, respectively.

3.1.2. Multi-frequency response resolved
First randomness is assumed in the spring stiffness KðxÞ in combination with the mean value of the forcing frequency

lxF
. According to analytical solution (15), KðxÞ influences the frequency and amplitude of the second sinusoidal term orig-

inating from the eigenmotion of the structure. The randomness has no effect on the frequency and only a small effect on the
amplitude of the term induced by the forcing. These observations are illustrated by the Ns ¼ 3 samples of the initial UASFE
discretization of probability space with Ne ¼ 1 element for t ¼ ½0;20� in Fig. 4(a). The multi-frequency responses consist of a
varying large amplitude and low-frequency eigenmotion superimposed with a small amplitude and constant forcing fre-
quency signal. It is essential to decompose these multi-frequency signals into single-frequency components, since the phase
of the samples is determined by the UASFE algorithm by identifying periods of oscillation based on the continuation of the
signal after a local maximum.

The separate frequency components can be recognized in the level 7 wavelet decomposition of the samples xiðtÞ into two
single-frequency signals ~xi;kðtÞ shown in Fig. 4(b) and (c). It can be seen that the wavelet decomposition does not exactly
reconstruct the single-frequency components as periodic sinusoidal functions. This results in a slightly different decompo-
sition of each sample, which can affect the convergence behavior of the method. These effects decrease as the difference be-
tween the frequencies increases. The UASFE interpolation of the samples is performed at constant phase / after extracting
the phase as function of time /i;kðtÞ from the single-frequency signals ~xi;kðtÞ. In Fig. 4(d) the single-frequency signals as func-
tion of their phase ~x�i;kð/i;1Þ are shown for j ¼ 1. It can be observed that scaling the signals ~xi;kðtÞ with their phase /i;kðtÞ elim-
inates the effect of the increasing phase differences with time, which results in the time-independent accuracy of UASFE. For
j ¼ 2 the plot of the single-frequency signals in terms of their phase ~x�i;2ð/i;2Þ resembles that of the time histories ~xi;2ðtÞ of
Fig. 4(c), since their frequency is not affected by the randomness in KðxÞ.

The component phases /i;kðtÞ are shown in Fig. 5. The different frequencies of the samples ~xi;1ðtÞ result a linear increase in
time of the phase differences between the sampled phases /i;1ðtÞ. Since KðxÞ has no effect on the frequency of ~xi;2ðtÞ the evo-
lution of the phases /i;2ðtÞ is virtually identical.

Combining the UASFE interpolations of the decomposed single-frequency components ~xkðt;xÞ according to (5) results in
the approximation of the mean lxðtÞ and standard deviation rxðtÞ given in Fig. 6 for Ne ¼ 1 and Ns ¼ 3. The results match
those of a converged Monte Carlo simulation with Ns ¼ 1000 samples up to a maximum error of e ¼ 3:4� 10�2, while reduc-
ing the computational costs in terms of the number of deterministic computations by three orders of magnitude. The error e
is computed using resampling of the piecewise polynomial response surface in the Monte Carlo sampling points. It therefore
reflects the residual error in lxðtÞ and rxðtÞ due to the response surface approximation with respect to the Monte Carlo sim-
ulation. This is a common approach to account for the confidence level of the finite Monte Carlo sample size.
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Fig. 4. The Ns ¼ 3 samples of UASFE with Ne ¼ 1 element for the harmonically forced oscillator with random KðxÞ.
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In the time history of the mean lxðtÞ the two frequency components are clearly present in terms of a decaying low-fre-
quency oscillation superimposed by a high-frequency periodic oscillation. The low-frequency component with approxi-
mately the natural frequency of the structure decays due the effect of KðxÞ on the frequency and the increasing phase
differences between the low-frequency components of the samples ~xi;1ðtÞ. The high-frequency forcing component of lxðtÞ
does not decay with time, since the forcing frequency is unaffected by KðxÞ. The mean of this stochastic multi-frequency
response does, therefore, not reach an asymptotically steady value, in contrast with single-frequency periodic responses sub-
ject to a random frequency.

The standard deviation rxðtÞ shows, on the other hand, the typical behavior of single-frequency signal with a random
frequency and deterministic initial condition. The initially oscillatory increase to a steady asymptotic value of rx ¼ 0:148
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Fig. 6. Results for the harmonically forced oscillator with random KðxÞ.
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originates from the effect of KðxÞ on the frequency and amplitude of the eigenmotion component of the response ~xi;1ðtÞ. The
forcing component ~xi;1ðtÞ does not significantly contribute to rxðtÞ, since KðxÞ has only a small effect on the amplitude on the
forcing mode.

In Fig. 7 the error convergence of UASFE based on the components of analytical solution (15) is given. The relative max-
imum error in the mean lxðtÞ and standard deviation rxðtÞwith respect to the Monte Carlo reference solution are shown. The
UASFE discretization maintains asymptotically a fourth-order error convergence also for multi-frequency responses, which is
in accordance with the underlying fourth-order second-degree Newton–Cotes quadrature rule.

3.1.3. Combination of randomness in structure and forcing
Randomness in an independent combination of spring stiffness KðxÞ and forcing frequency xFðxÞ results in a qualita-

tively different stochastic solution. The UASFE approximation of the mean lxðtÞ and standard deviation rxðtÞ for Ne ¼ 4 ele-
ments and Ns ¼ 13 given in Fig. 8 is converged up to dNe ¼ 5� 10�2. The comparison with a converged Monte Carlo result
based on Ns ¼ 6:3� 104 samples shows that UASFE leads to a maximum error of e ¼ 1:5� 10�2 while achieving a reduction
of samples by three orders of magnitude. The large sample size required by the Monte Carlo method to converge illustrates
the complexity of this multi-scale stochastic example. The mean lxðtÞ shows for this case a decaying oscillation to zero due
to the effect of KðxÞ and xFðxÞ on the frequency of both modes ~xi;1ðtÞ and ~xi;2ðtÞ. The contribution of the high-frequency com-
ponent ~xi;2ðtÞ to lxðtÞ decays fast and can only be identified for t < 5. The standard deviation rxðtÞ shows a more complex
initial behavior due to the additional randomness in xFðxÞ. For t > 5 the standard deviation rxðtÞ is slightly higher compared
to the results for deterministic forcing with an asymptotic value of rx ¼ 0:154.
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3.2. Flutter panel

The two-dimensional panel problem is a relatively simple example of a continuous structure which exhibits a multi-fre-
quency response as a result of aerodynamic loads. A modal representation of the response of the panel problem described in
Section 3.2.1 is used here in terms of the eigenmodes of the structure. The effect of randomness in the panel density on the
energy of the structure is analyzed in Section 3.2.2. In Section 3.2.3 a random field for the modulus of elasticity of the plate is
considered.

3.2.1. Panel problem
The dynamical behavior of a fully clamped plate subject to a supersonic flow sketched in Fig. 9 is a standard test problem

in aeroelasticity [12,29]. The material of the plate with length L ¼ 1 m has a Poisson ratio of mp ¼ 0:35. The air flow with
unperturbed density q1 ¼ 1:225 kg=m3 and pressure p1 ¼ 1:0� 105 Pa has a free stream Mach number of M1 ¼ 2:5 and ra-
tio of specific heats c ¼ 1:4. The effect of randomness in the density qp and the modulus of elasticity Epðx;xÞ of the plate is
considered. Parametric randomness is assumed in the plate density qp given by a uniform distribution around mean
lqp
¼ 2700 kg=m3 with coefficient of variation cvqp

of 10%. The randomness in the modulus of elasticity of the plate
Epðx;xÞ is described in terms of a Gaussian random field with local mean lE ¼ 70� 109 Pa and local coefficient of variation
of 0.1% for the linear physical modeling to remain valid. The spatial correlation is given by the exponential covariance
function
Cðx1; x2Þ ¼ e�
jx1�x2 j

Lc ; ð16Þ
with correlation length Lc ¼ L equal the characteristic length of the plate L. This will also result in an efficient expansion of
the correlation in Karhunen–Loève terms, since it is well known that the Karhunen–Loève expansion is less effective for
weakly correlated data [21]. The thickness of the plate h ¼ 4:38� 10�3 m is chosen such that it corresponds to the determin-
istic flutter point.

The equations of motion of the plate are discretized by a finite element discretization with three spatial elements with
Hermitian basis functions for the nodal displacements and rotations. Piston theory is used to determine the aerodynamic
pressure puðx; t;xÞ on the upper side of the panel
puðx; t;xÞ ¼ q1c1
@w
@t
þ V1

@w
@x

� �
; ð17Þ
with vertical plate displacement wðx; t;xÞ, and free stream speed of sound c1 and velocity V1. First-order relation (17) is a
valid approximation for supersonic flow with Mach numbers from 2 to 5 [12]. The discretization of the flow and the structure
results in a matrix equation governing the coupled aeroelastic system
M
@2u
@t2 þ D

@u
@t
þ Ku ¼ 0; ð18Þ
with uðt;xÞ the nodal degrees of freedom of the structure, structural mass matrix M, aerodynamic damping matrix D, and
stiffness matrix K with a symmetric and asymmetric contribution of the structure and the flow, respectively. The random
field for the modulus of elasticity Epðx;xÞ is discretized in terms of a finite number of random parameters using a Karhun-
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en–Loève (KL) expansion [21] truncated after the second term. Time marching is performed until t ¼ 0:5 using a second-or-
der implicit time integration scheme with a time step of Dt ¼ 1� 10�4.

Since the aerodynamic forces are modeled here using linear piston theory, the eigenfrequencies and eigenmodes of the
coupled fluid–structure system can, in principle, be determined. However, this example is used here as a test problem for
an aeroelastic system with, in general, nonlinear aerodynamics. It is, therefore, assumed in the stochastic analysis that only
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the eigenmodes of the linear structure in vacuum are known. The motion of the structure is here described in terms of the
structural eigenmodes. The initial condition is given by the first eigenmode of the plate with a maximum deflection of
0.01 m.

3.2.2. Continuous structure analyzed
The difference between the eigenmodes of the structure and those of the coupled fluid–structure interaction system for

the mean values of the random parameters are shown in Fig. 10 for the M�1K matrix. Due to these differences the initial
deflection of the first structural eigenmode excites all eigenmodes of the coupled system. In the resulting dynamical re-
sponse the coupled eigenmodes oscillate at their coupled eigenfrequencies, which differ from the structural natural frequen-
cies as given in Table 1 for the M�1K matrix. Projecting the plate motion back onto the structural eigenmodes results in
multi-frequency signals for the dynamical behavior of the plate described in terms of its structural eigenmodes. Also a nodal
description of the structure in terms of the degrees-of-freedom of the finite element discretization gives rise to multi-fre-
quency signals.

The multi-frequency response of the structural eigenmodes is illustrated in Fig. 11 for the example of the velocity com-
ponent of the fourth eigenmode v4ðtÞ for randomness in the plate density qpðxÞ and a deterministic modulus of elasticity
Ep ¼ lEp

. The Ns ¼ 3 UASFE samples v4i
ðtÞ for Ne ¼ 1 element show the effect of the randomness on the multi-frequency re-

sponse up to t ¼ 0:1 s. The multi-frequency signals for the eigenmode deflections and velocities are here decomposed into
single-frequency signals using a level 5 wavelet decomposition.

The influence of the random qpðxÞ on the mean lðtÞ and standard deviation rðtÞ of the total energy of the structure is
given in Fig. 12. Also shown are the potential and kinetic energy, Uðt;xÞ and Tðt;xÞ, of the plate defined as
Fig.
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10. Deterministic eigenmodes of the structure and the coupled fluid–structure interaction system for the M�1K matrix in the panel problem.
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Fig. 11. The Ns ¼ 3 sampled velocity components of the fourth eigenmode v4i
ðtÞ of UASFE with Ne ¼ 1 element for the panel problem with random plate

density qpðxÞ.

Table 1
Deterministic eigenfrequencies of the structure and the coupled fluid–structure interaction system for the M�1K matrix in the panel problem.

Eigenmode Eigenfrequency (Hz)

Structure Fluid–structure

1 24.49 53.81
2 68.05 59.78
3 135.0 133.3
4 255.4 254.8
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The UASFE results for Ne ¼ 1 element and Ns ¼ 3 samples agree up to a maximum error of e ¼ 7:7� 10�3 with converged
Monte Carlo results based on Ns ¼ 500 samples, while reducing the computational costs by two orders of magnitude. In
Fig. 12(a) also the deterministic total structural energy is shown, which exhibits initially a fast increase due to transport
of energy from the flow to the structure. The asymptotically periodic oscillation for the total structural energy illustrates that
the deterministic parameter settings correspond to the deterministic flutter point. The mean total energy is initially close to
the deterministic result for t < 0:05. However, for larger t the random qpðxÞ results in an asymptotically diverging mean
total energy. This observation is in correspondence with the well know fact that random realizations of an uncertain param-
eter can lead to unstable behavior of aeroelastic systems. The mean total energy is approximately equally divided between
mean potential and kinetic energy.

Random qpðxÞ results also in an increasing standard deviation for the total, potential, and kinetic energy of the plate as
shown in Fig. 12(b). Initially the variation of the potential and kinetic energy partially cancel each other, which results in a
smaller standard deviation for the total energy. For t > 0:3 the standard deviation of the total energy is larger than those of
the potential and kinetic energy. The coefficient of variation of the total energy increases to a value of 62.5% at t ¼ 0:4, which
corresponds to an amplification factor of the input randomness of 6.25.

3.2.3. Random field for modulus of elasticity
The random field for the modulus of elasticity Epðx;xÞ results in a different behavior of the mean and standard deviation

of the potential and kinetic energy, Uðt;xÞ and Tðt;xÞ, of the plate than random qpðxÞ, see Fig. 13. Variations in the plate
density affect both the frequency and the damping of the aeroelastic system, since qpðxÞ appears in the mass matrix M as a
multiplication factor for the matrix entries. On the other hand the random Epðx;xÞ only influences the amplitude signifi-
cantly through the symmetric part of the elasticity matrix K. Since the elasticity has a small effect on the frequency of oscil-
lation, all samples of Uðt;xÞ and Tðt;xÞ oscillate in phase with the deterministic frequency of the system between zero and
the different sampled total energies. As a result, the mean and the standard deviation of Uðt;xÞ and Tðt;xÞ also oscillate
alternately between zero and the value of the mean and standard deviation of the total energy, respectively.

The 0.1% variation in the modulus of elasticity has, however, a similar quantitative influence on the mean and standard
deviation of the total energy of the plate as the 10% variation of qpðxÞ. The total energy of the plate is, therefore, two orders
of magnitude more sensitive to variation in Eðx;xÞ than in qpðxÞ. The mean and standard deviation increase in time to a
coefficient of variation of 48.5% at t ¼ 0:4, which corresponds to an amplification factor for the coefficient of variation of 485.
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Fig. 12. Results for the panel problem with random plate density qpðxÞ.
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The UASFE results shown for Ne ¼ 8 elements and Ns ¼ 25 samples are converged up to 1� 10�3. In Fig. 14 the mean and
standard deviation of the total energy approximation of UASFE are compared to those of Monte Carlo simulation based on
the same Karhunen–Loève expansion as used for UASFE to eliminate the Karhunen–Loève discretization error. The Monte
Carlo results for 103; 104, and 105 samples converge to the UASFE results, although Monte Carlo simulation with 105 samples
has not yet reached the accuracy of UASFE based on Ns ¼ 25 samples. The comparison for the potential and kinetic energy
results in the same observations.

3.3. Three-dimensional transonic wing

The transonic AGARD 445.6 wing [40] is a standard benchmark case for the fluid–structure interaction of a three-dimen-
sional continuous structure. The discretization of the aeroelastic configuration is described in Section 3.3.1. In Section 3.3.2
randomness is introduced in the free stream velocity. The stochastic response of the system and the flutter probability are
determined.

3.3.1. AGARD 445.6 wing benchmark problem
The AGARD aeroelastic wing configuration number 3 [40] known as the weakened model is considered here with a NACA

65A004 symmetric airfoil, taper ratio of 0.66, 45� quarter-chord sweep angle, and a 2.5-foot semi-span subject to an inviscid
flow. The structure is described by a nodal discretization using an undamped linear finite element model in the Matlab finite
element toolbox OpenFEM [25]. The discretization contains in the chordal and spanwise direction 6� 6 brick-elements with
20 nodes and 60 degrees-of-freedom, and at the leading and trailing edge 2� 6 pentahedral elements with 15 nodes and 45
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degrees-of-freedom as in [43]. The orthotropic material properties are obtained from [3] and the fiber orientation is taken
parallel to the quarter-chord line.

The Euler equations for inviscid flow [7] are solved using a second-order central finite volume discretization on a
60� 15� 30 m domain using an unstructured hexahedral mesh. The free stream conditions for the density
q1 ¼ 0:099468 kg=m3 and pressure p1 ¼ 7704:05 Pa are taken from [40]. Time integration of the samples is performed using
a third-order implicit Runge–Kutta scheme [17] until t ¼ 1:25 s to determine the stochastic solution until t ¼ 1 s. The first
bending mode with a vertical tip displacement of ytip ¼ 0:01 m is used as initial condition for the structure, see Fig. 15.
The initial conditions of the flow are equal to the free stream boundary conditions.

The coupled fluid–structure interaction system is solved using a partitioned IMEX scheme [41,42] with explicit treatment
of the coupling terms without sub-iterations. An Arbitrary Lagrangian–Eulerian formulation is employed to couple the fluid
mesh with the movement of the structure. The flow forces and the structural displacements are imposed on the structure
and the flow using nearest neighbor and radial basis function interpolation [43], respectively. The fluid mesh is also de-
formed using radial basis function interpolation of the boundary displacements [5]. A convergence study has been performed
to determine a suitable flow mesh discretization and time step size. Deterministic results for the selected flow mesh with
3:1� 104 volumes and time step of Dt ¼ 2:5� 10�3 s agree well with experimental and computational results in literature
[18,40,43]. The deterministic flutter velocity is found to be Uflut ¼ 313 m=s, which corresponds to a Mach number of
M1 ¼ 0:951.

3.3.2. Randomness causes non-zero flutter probability
In the following, the effect of randomness in the free stream velocity U1ðxÞ is studied. The mean free stream velocity is

chosen 5% below the actual deterministic flutter velocity, lU1 ¼ 0:95Uflut, to assess the effectiveness of a realistic design
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Fig. 15. Initial condition and grid for the AGARD 445.6 wing for mean free stream velocity lU1 .

7040 J.A.S. Witteveen, H. Bijl / Journal of Computational Physics 228 (2009) 7025–7045



270 280 290 300 310 320
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

freestream velocity U∞

pr
ob

ab
ilit

y 
de

ns
ity

Fig. 16. Input probability density function of the freestream velocity U1 for the AGARD 445.6 wing.

0 0.2 0.4 0.6 0.8 1
−250

−200

−150

−100

−50

0

50

100

150

200

250

time t

lif
t [

N
]

UASFE (Ne=1,Ns=3)

i=1 i=2 i=3

0.88 0.9 0.92 0.94 0.96 0.98 1 1.02
−50

0

50

100

150

200

250

U∞/Uflut

lif
t L

 [N
]

t=1
UASFE (Ne=5)
Ns=11 samples

Fig. 17. Results for the AGARD 445.6 wing with random free stream velocity U1ðxÞ.

J.A.S. Witteveen, H. Bijl / Journal of Computational Physics 228 (2009) 7025–7045 7041



7048J.A.S. Witteveen, H. Bijl/Journal of Computational Physics 228 (2089) 7025Ö7045
safety factor. The coefficient of variation of the assumed unimodal beta distribution is set to cvU1 ¼ 3:5%, see Fig. 16. The
beta distribution is selected as a distribution on a finite domain with realistically zero probability at the endpoints of the
interval. The outputs of interest are the lift Lðt;xÞ and the vertical tip displacement of the tip-node ytipðt;xÞ.

The first Ns ¼ 3 sampled time series of the lift Liðt;xÞ of the UASFE discretization with Ne ¼ 1 element show in Fig. 17(a)
that the first bending mode is the dominant mode in the system response. A second mode which is initially present in the
response, damps out quickly, such that a wavelet decomposition pre-processing step is in this case not necessary to obtain
the stochastic solution using UASFE. The samples illustrate that the free stream velocity has a significant effect on the fre-
quency and the damping of the system response, which results in a diverging oscillation for i ¼ 3, and decaying oscillations
for i ¼ 1 and mean value lU1 at i ¼ 2. The same conclusions can be drawn from Fig. 17(b) in which the response surface
approximation of the lift Lðt;xÞ at t ¼ 1 is given for Ne ¼ 5 elements and Ns ¼ 11 samples. Here the response surface is re-
ferred to as the output of interest L as function of the random input parameter U1=Uflut. The response surface has an oscil-
latory character due to the effect of the random U1ðxÞ on the frequency of the lift oscillation and consequently on the phase
differences in Lðt;xÞ at t ¼ 1. The adaptive UASFE grid refinement results automatically in a gradually finer mesh in the re-
gion of large lift amplitudes at large values of U1ðxÞ.

Results for the time evolution of the mean lLðtÞ and the standard deviation rLðtÞ of the lift are given in Fig. 18 for Ne ¼ 4
and Ne ¼ 5 elements. The two approximations are converged with respect to each other up to 5� 10�3. The time history for
the mean lift lLðtÞ shows a decaying oscillation up to t ¼ 0:4 s from the initial value of lL ¼ �23:9 N. This behavior can be
explained by the decaying lift oscillation for a large range of U1ðxÞ values and the effect of U1ðxÞ on the increasing phase
differences with time. For t > 0:4 the decay is approximately balanced by the exponentially increasing amplitude of the
unstable part of the U1ðxÞ parameter domain. In contrast, the standard deviation shows an oscillatory increase from the
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Fig. 18.Results for the AGARD 445-6 wing with random free stream velocityU1ðxfi.
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initial rL ¼ 2:46 N up to a local maximum of rL ¼ 18:3 N at t ¼ 0:31 s due to the increasing phase differences with time. For
t > 0:31 the standard deviation slightly decreases due to the decreasing lift amplitude in part of the parameter domain.
Eventually, the unstable realizations result in an increasing standard deviation which reaches at t ¼ 1 values between
rL ¼ 14 and rL ¼ 19, which corresponds to an amplification of the initial standard deviation with a factor 6–8.

The nodal description of the structure directly returns the vertical tip-node displacement ytipðt;xÞ. The approximations of
the mean lytip

ðtÞ and standard deviation rytip
ðtÞ of ytipðt;xÞ show in Fig. 19 a qualitatively similar behavior as the lift Lðt;xÞ.

The standard deviation rytip
ðtÞ vanishes, however, initially due to the deterministic initial condition for the structure in con-

trast with the non-zero rLðtÞ at t ¼ 0. The standard deviation reaches values between rytip
¼ 4:2� 10�3 m and

rytip
¼ 5:6� 10�3 m at t ¼ 1, which corresponds to a standard deviation equal to 42% and 56% of the deterministic initial ver-

tical tip deflection.
The probability of flutter can be determined by constructing the probability distribution of the damping factor of the sys-

tem given in Fig. 20. The piecewise continuously differentiable function resulting from the piecewise polynomial approxi-
mation is more suited for representing the solution in terms of the cumulative distribution function and integral
quantities like the probability of flutter. The probability density of Fig. 20(b) is derived from the cumulative distribution
using a smoothing filter. The damping factor is here extracted from the last period of oscillation of the sampled vertical
tip-node displacements. Positive and negative damping factors denote unstable and damped oscillatory responses, respec-
tively. In other applications a positive damping factor is sometimes associated with stable motions. Even though the mean
free stream velocity lU1 is fixed at a safety margin of 5% below the deterministic flutter velocity Uflut, the non-zero proba-
bility of positive damping indicates a non-zero flutter probability. The 3.5% coefficient of variation of U1ðxÞ results actually
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Fig. 19. Results for the AGARD 445.6 wing with random free stream velocity U1ðxÞ.
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in a probability of flutter of 6.19%. Taking physical uncertainties into account in numerical predictions is often a more reli-
able approach than using safety margins in combination with deterministic simulation results.

4. Conclusions

The Unsteady Adaptive Stochastic Finite Elements (UASFE) method is extended to resolve the effect of randomness in
aeroelastic simulations with multi-frequency responses and continuous structures by employing a wavelet decomposition
pre-processing step. The sampled multi-frequency signals are decomposed into their single-frequency components in the
wavelet analysis. The effect of the randomness on the single-mode components is determined by employing UASFE interpo-
lation of the single-frequency signals at constant phase. This eliminates the effect of the increasing phase differences be-
tween the samples and consequently the increasing number of samples with time usually required by uncertainty
quantification methods in time-dependent problems. The stochastic behavior of the multi-frequency response is, finally, ob-
tained by summing the separate effects of the single-mode components. The actual interpolation is performed using a non-
intrusive higher-order total variation diminishing Adaptive Stochastic Finite Elements (ASFE) approach based on Newton–
Cotes quadrature in simplex elements. The resulting UASFE method is an efficient and robust approach for resolving the sto-
chastic response of multi-frequency systems and continuous structures.

The application of UASFE to the multi-frequency response of a harmonically forced oscillator with randomness in the
spring stiffness and the forcing frequency illustrates the effectiveness of the approach for this complex multi-scale stochastic
problem by reducing the required number of samples by three orders of magnitude compared to Monte Carlo simulations.
The UASFE discretization achieves a fourth-order error convergence with respect to the Monte Carlo reference solution for
random spring stiffness. The study of a multi-mode response of a continuous plate structure in supersonic flow with a ran-
dom plate density and a random field modulus of elasticity shows a qualitatively different stochastic behavior of the poten-
tial and kinetic energy of the plate for the two sources of randomness. The diverging mean and standard deviation of the total
structural energy are two orders of magnitude more sensitive to variations in the modulus of elasticity than the plate den-
sity, which results in an amplification of the input coefficient of variation by a factor 485 at t ¼ 0:4. The results for the aero-
elastic simulation of the three-dimensional transonic AGARD 445.6 wing with random free stream velocity illustrate that,
although the mean free stream velocity is a safety margin of 5% below the deterministic flutter velocity, a 3.5% coefficient
of variation still results in a non-zero flutter probability of 6.19%.
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